

International Advanced Research Journal in Science, Engineering and Technology Vol. 3, Issue 6, June 2016

Intuitionistic Fuzzy Dot β -Sub Algebra of β -Algebras

A. Ramesh Kumar¹, G. Gomathi Eswari²

Head and Research Advisor, PG and Research Department of Mathematics, Srimad Andavan arts and Science College,

Tiruchirapalli, India¹

Assistant Professor, Mathematics, Srimad Andavan arts and Science College, Tiruchirapalli, India²

Abstract: In this paper, we introduce the notion of intuitionistic fuzzy dot β – sub algebras on β – algebras and investigate some of their properties.

Keywords: BCK/BCI algebras, B-algebras, fuzzy dot β – subalgebra, intuitionistic fuzzy dot β – subalgebras on β – algebras.

I. INTRODUCTION

In 1996, Y.Imai and K.Iseki ([5],[6],[7]) introduced two classes of abstract algebras: BCK-algebras and BCI-algebras. It is known that the class of BCK-algebras is a proper subclass of BCI algebras. In 2002, J. Neggers and H.S. Kim [12] introduced the notion of B-algebras which is another generalization of BCK algebras. Also they introduced the notion of β -algebras[13] where two operations are coupled in such a way as to reflect the natural coupling, which exists between the usual group operation and its associated B-algebras. In 2012, Y.H.Kim [10] investigated some properties of β -algebras.

The important point in the evaluation of the modern concept of uncertainty was the paper by Lofti A. Zadeh [16] that introduced the theory of fuzzy sets. The study of fuzzy algebraic structures was started with the introduction of the concept of fuzzy subgroups in 1997, by Rosenfeld [14]. The concept of intuitionistic fuzzy subset was introduced by Atanassov [17] in 1986, which is a generalization of the notion of fuzzy sets. Fuzzy sets give a degree of membership of an element in a given set, while Intuitionistic fuzzy sets give both a degree of membership and a non-membership. OG. Xi [15] applied the concept of fuzzy sets to BCK algebras and got some results in 1991. In 1993, Y.B. Jun [8] applied it to BCI algebras. In their paper [9], the authors introduced the notion of fuzzy dot sub algebras of BCK/BCI algebras as a generalization of a fuzzy subalgebra, and then investigated several basic properties which are related to fuzzy dot sub algebras. In [2] AI-Shehrie introduced the notion of fuzzy dot SU-Sub algebras. In [11], K.H.Kim introduced the notion of fuzzy dot sub algebras of dalgebras in[4]. In[1] M.Abu Ayub Ansari and M.Chandramouleeswaran introduced the notion of fuzzy dot β – subalgebra of β – algebras.

This motivated us to study the intuitionistic fuzzy dot β – subalgebra of β – algebras. In this paper, we

In 1996, Y.Imai and K.Iseki ([5],[6],[7]) introduced two Introduce the notion of intuitionistic fuzzy dot β – sub classes of abstract algebras: BCK-algebras and BCIalgebras. It is known that the class of BCK-algebras is a proper subclass of RCL algebras in 2002. I Nearans and properties.

II. PRELIMINARIES

Definition 2.1: BCK-algebra

A BCK-algebra is a non-empty set X with a costant '0' and a binary operation '*' satisfying the following axioms

BCK1:
$$\{(x*y)*(x*z)\}*(z*y)=0$$

BCK2: $\{x*(x*y)\}*y=0$
BCK3: $x*x=0$
BCK4: $x*y=0$ and $y*x=0 \Rightarrow x=y$
BCK5: $0*x=0 \quad \forall x, y, z \in X$

Definition 2.2: BCI-algebra

A BCI-algebra is a non-empty set X with a constant '0' and a binary operation '*' satisfying the following axioms

BCI1:
$$\{(x*y)*(x*z)\}*(z*y)=0$$

BCI2: $\{x*(x*y)\}*y=0$
BCI3: $x*x=0$
BCI4: $x*y=0$ and $y*x=0 \Rightarrow x=y$

Definition 2.3: B-algebra

A B-algebra is a non-empty set X with a costant '0' and a binary operation '*' satisfying the following axioms

B1:
$$x * x = 0$$

B2: $x * 0 = 0$
B3: $(x * y) * z = x * \{z * (0 * y)\} \quad \forall x, y, z \in X$

International Advanced Research Journal in Science, Engineering and Technology Vol. 3, Issue 6, June 2016

Definition 2.4: B-Subalgebra

A non-empty subset S of a B-algebra X is called value of x in X a B-Subalgebra of X if $x * y \in S$ for any **Definition 2.9:** If $x, y \in S$

Definition 2.5: B – Homomorphism

A mapping $f: X \to Y$ of a B-algebra X is

called B-homomorphism if

 $f(x*y) = f(x)*f(y) \quad \forall x, y \in X$ Note:1: In *B*-homomorphism f(0) = 0

Definition 2.6: β – algebra

A β -algebra is a non-empty set X with a costant '0' and a binary operations '+' and '-' satisfying the following axioms β 1: x-0=x

p 1. x = 0 = x

 $\beta 2: (0-x) + x = 0$

$$\beta$$
 3: $(x-y)-z = x-(z+y) \quad \forall x, y, z \in X$

Example 2.6:

Let $X = \{0, 1, 2, 3\}$ be a set with constant '0' and two binary operations '+' and '-' are defined on X with the Cayley table

+	0	1	2	3	-	0	1	2	3
0	0	1	2	3	0	0	3	2	1
1	1	2	3	0	1	1	0	3	2
2	2	3	0	1	2	2	1	0	3
3	3	0	1	2	3	3	2	1	0

Then (X, +, -, 0) is a β -algebra

Definition 2.7: β – Homomorphism

Let (X, +, -, 0) and (Y, +, -, 0') be two β algebras. A mapping $f: X \to Y$ is said to be a β homomorphism if it satisfies the following conditions f(x+y) = f(x) + f(y) and f(x-y) = f(x) - f(y) $\forall x, y \in X$

Note:2: In a β – Homomorphism f(0) = 0'

Definition 2.8: Fuzzy Set

Let X be a set of universal discourse. A fuzzy set μ in X is defined as a function $\mu: X \to [0,1]$. For

each element x in X, $\mu(x)$ is called the membership value of x in X

Definition 2.9: Intersection of two Fuzzy Sets

If μ_1 and μ_2 are two fuzzy sets of X then the intersection $\mu_1 \cap \mu_2$ of μ_1 and μ_2 is defined as $(\mu_1 \cap \mu_2)(x) = \operatorname{Min} \{\mu_1(x), \mu_2(x)\}$

Definition 2.10: Union of two Fuzzy Sets

If μ_1 and μ_2 are two fuzzy sets of X then the union $\mu_1 \cup \mu_2$ of μ_1 and μ_2 is defined as $(\mu_1 \cup \mu_2)(x) = Max \{\mu_1(x), \mu_2(x)\}$ In general $(\frown \mu_i)(x) = Min \{\mu_i(x) / i = 1, 2, 3...\}$

Definition 2.10: Union of two Fuzzy Sets

If μ_1 and μ_2 are two fuzzy sets of X then the union $\mu_1 \cup \mu_2$ of μ_1 and μ_2 is defined as $(\mu_1 \cup \mu_2)(x) = \max \{\mu_1(x), \mu_2(x)\}$

In general $(\cup \mu_i)(x) = Max \{\mu_i(x) / i = 1, 2, 3...\}$ Note:3: If μ_1 and μ_2 are two fuzzy sets of X

then
$$\mu_1 \subseteq \mu_2 \Leftrightarrow \mu_1(x) \le \mu_2(x)$$

Note:4: If μ is a fuzzy set on X, then $\mu^{c}(x) = 1 - \mu(x)$

Definition 2.11: Direct product of two Fuzzy Sets

If μ_1 and μ_2 are two fuzzy sets of X_1 and X_2 respectively.

Then the direct product $\mu_1 \times \mu_2$ of μ_1 and μ_2 is defined as the fuzzy set of $X_1 \times X_2$ $(\mu_1 \times \mu_2)(x_1, x_2) = Min \{\mu_1(x_1), \mu_2(x_2)\} \quad \forall (x_1, x_2) \in X_1 \times X_2$

Definition 2.12: Level Fuzzy Subset

Let μ be a fuzzy set on X. For $t \in [0,1]$, the set $\mu_t = \{x \in X \mid \mu(x) \ge t\}$ is called level fuzzy subset of μ

Proposition 2.13:

If $t_1 \leq t_2$, then $\mu_{t_2} \subseteq \mu_{t_1}$ where μ_{t_2} and μ_{t_1} are any two level fuzzy subsets of μ where μ be a fuzzy set on X

International Advanced Research Journal in Science, Engineering and Technology Vol. 3, Issue 6, June 2016

Definition 2.13: Fuzzy Dot β – **Subalgebra of** β – **algebra** Let μ be a fuzzy set in a β – algebra X. Then μ is called a fuzzy dot β – Subalgebra of X if it satisfies the following conditions

1. $\mu(x+y) \ge \mu(x) \circ \mu(y)$

2. $\mu(x-y) \ge \mu(x) \circ \mu(y) \quad \forall x, y \in X$ Example: 2.13

Example:2.13

Consider the β -algebra (X, +, -, 0) where

 $X = \{0, 1, 2, 3\}$

Define $\mu: X \to [0,1]$ such that

 $\mu(x) = \begin{cases} 0.6 & \text{if } x = 0\\ 0.7 & \text{if } x = 1\\ 0.3 & \text{if } x = 2, 3 \end{cases}$ Then μ is a fuzzy dot β -subalgebra of X

Theorem:2.1

Every fuzzy β -subalgebra of X is a fuzzy dot β -subalgebra of X

Theorem:2.2

If μ_1 and μ_2 are two fuzzy dot β -subalgebra of **algebra** X then $\mu_1 \cap \mu_2$ is also a fuzzy dot β -subalgebra of In thi X Intuition

Corollary:2.2

If $\{\mu_i / i = 1, 2, 3...\}$ be a family of fuzzy dot β -subalgebra of X then $\cap \mu_i$ is also a fuzzy dot β -subalgebra of X

Theorem:2.3

If μ_1 and μ_2 are two fuzzy dot β -subalgebra of X then the direct product $\mu_1 \times \mu_2$ is defined by $(\mu_1 \times \mu_2)(x, y) = \mu_1(x) \circ \mu_2(y)$ is also a fuzzy dot β -subalgebra of $X \times X$

Theorem:2.4

Let $f: X \to Y$ be a homomorphism of a β -algebra of X into a β -algebra of Y. If μ is a fuzzy dot β -algebra of Y then the pre-image of μ , denoted by $f^{-1}(\mu)$ is defined as $f^{-1}{\mu(x)} = \mu{f(x)}, \forall x \in X$ is a fuzzy dot β -subalgebra of X

Theorem:2.5

Let $f: X \to X$ be an endomorphism on a $\beta - ($ subalgebra of X. If μ is a fuzzy dot β – algebra of (

X. Define a fuzzy set $\mu_f : X \to [0,1]$ by $\mu_f(x) = \mu(f(x)) \quad \forall x \in X$. Then μ_f is a fuzzy dot β – algebra of X

Theorem:2.6 For a fuzzy set A of a β -algebra of X. Let μ_A be a fuzzy relation defined by $\mu_A(x+y) = A(x) \circ A(y)$. Then A is a fuzzy dot β -subalgebra of X if and only if μ_A is a fuzzy dot β -subalgebra of $X \times X$

Theorem:2.7

Let X and Y be β -algebras. Let μ be a fuzzy dot β -subalgebra of $X \times X$. Define a fuzzy set $P_x(\mu)(x) = \mu(x,0), \forall x \in X$. Then $P_x(\mu)$ is a fuzzy dot β -subalgebra of X. Also define a fuzzy set $P_y(\mu)$ of Y by $P_y(\mu)(y) = \mu(0, y), \forall y \in Y$ Then $P_y(\mu)$ is a fuzzy dot β -subalgebra of Y

III. CHAPTER

Intuitionistic Fuzzy dot β – subalgebras of a β – algebra

In this section we introduce the notion of Intuitionistic fuzzy dot β -subalgebras of a β -algebra and prove some simple theorems

Definition:3.1 Intuitionistic Fuzzy Set

An Intuitionistic fuzzy set A over X is an object having the form $A = \{ \langle x, \mu(x), \gamma(x) \rangle | x \in X \}$ where $\mu(x): X \to [0,1]$ and $\gamma(x): X \to [0,1]$ with the condition $0 \le \mu(x) + \gamma(x) \le 1$, $\forall x \in X$. The numbers $\mu(x)$ and $\gamma(x)$ denote, respectively, the degree of membership and non-membership of the element $x \in A$. Obviously, when $\gamma(x) = 1 - \mu(x), \forall x \in X$, the set A becomes a fuzzy set. For the sake of simplicity, use the symbol $A = (\mu, \gamma)$ for we shall the intuitionistic fuzzy set $A = \{ \langle x, \mu(x), \gamma(x) \rangle | x \in X \}$

Properties of Intuitionistic Fuzzy Set

If $A = \{ \langle x, \mu_A(x), \gamma_A(x) \rangle / x \in X \}$ an $_{B = \{ \langle x, \mu_B(x), \gamma_B(x) \rangle / x \in X \}$ are any two intuitionistic fuzzy sets of a set X, then (a). $A \subseteq B \Leftrightarrow$ for all $x \in X$, $\mu_A(x) \le \mu_B(x)$ and

$$\gamma_{A}(x) \ge \gamma_{B}(x)$$
(b). $A = B \Leftrightarrow \mu_{A}(x) = \mu_{B}(x)$ and $\gamma_{A}(x) = \gamma_{B}(x)$
(c). $A \cap B = \{ \langle x, (\mu_{A} \cap \mu_{B})(x), (\gamma_{A} \cap \gamma_{B})(x) \rangle \}$ where

International Advanced Research Journal in Science, Engineering and Technology Vol. 3, Issue 6, June 2016

$$(\mu_{A} \cap \mu_{B})(x) = \operatorname{Min} \{\mu_{A}(x), \mu_{B}(x)\} \text{ and}$$

$$(\gamma_{A} \cap \gamma_{B})(x) = \operatorname{Max} \{\gamma_{A}(x), \gamma_{B}(x)\}$$

$$(d). \ A \cup B = \{\langle x, (\mu_{A} \cup \mu_{B})(x), (\gamma_{A} \cup \gamma_{B})(x) \rangle\} \text{ where}$$

$$(\mu_{A} \cup \mu_{B})(x) = \operatorname{Max} \{\mu_{A}(x), \mu_{B}(x)\} \text{ and}$$

$$(\gamma_{A} \cup \gamma_{B})(x) = \operatorname{Min} \{\gamma_{A}(x), \gamma_{B}(x)\}$$

Definition:3.2

An Intuitionistic fuzzy set A of a β -algebra X is said to be an intuitionistic fuzzy dot β – subalgebra of X if it satisfies the following axioms:

IFD
$$\beta$$
 SA1: $\mu(x+y) \ge \mu(x) \circ \mu(y)$
IFD β SA2: $\mu(x-y) \ge \mu(x) \circ \mu(y)$
IFD β SA3: $\gamma(x+y) \le \gamma(x) \circ \gamma(y)$
IFD β SA4: $\gamma(x-y) \le \gamma(x) \circ \gamma(y)$

Example:3.2

Theorem:3.1

intuitionistic fuzzy dot β – subalgebra of X

Proof:

Let $A = (\mu, \gamma)$ be a intuitionistic fuzzy β – subalgebra of X. Then $\mu(x+y) \ge \operatorname{Min}\left\{\mu(x), \mu(y)\right\} \ge \mu(x) \circ \mu(y)$ $\gamma(x+y) \le \operatorname{Max}\left\{\gamma(x), \gamma(y)\right\} \le \gamma(x) \circ \gamma(y)$ $\mu(x-y) \ge \operatorname{Min} \left\{ \mu(x), \mu(y) \right\} \ge \mu(x) \circ \mu(y)$ $\gamma(x-y) \le \operatorname{Max}\left\{\gamma(x), \gamma(y)\right\} \le \gamma(x) \circ \gamma(y)$ Therefore $A = (\mu, \gamma)$ is a a intuitionistic fuzzy dot

 β – subalgebra of X

Theorem: 3.2

 $A = (\mu_1, \gamma_1)$ and $B = (\mu_2, \gamma_2)$ be any two If intuitionistic fuzzy dot β – subalgebra of then Χ $A \cap B$ is also a intuitionistic fuzzy dot β – subalgebra of X Proof: For any $x, y \in X$, $(\mu_1 \cap \mu_2)(x+y) = Min \{\mu_1(x+y), \mu_2(x+y)\}$ $\geq \operatorname{Min}\left\{\mu_{1}(x)\circ\mu_{1}(y),\mu_{2}(x)\circ\mu_{2}(y)\right\}$ $\geq \left[\operatorname{Min}\left\{\mu_{1}(x),\mu_{2}(x)\right\}\right] \circ \left[\operatorname{Min}\left\{\mu_{1}(y),\mu_{2}(y)\right\}\right]$

$$= (\mu_{1} \cap \mu_{2})(x) \circ (\mu_{1} \cap \mu_{2})(y)$$
Hence

$$(\mu_{1} \cap \mu_{2})(x+y) \ge (\mu_{1} \cap \mu_{2})(x) \circ (\mu_{1} \cap \mu_{2})(y)$$
.....(1)

$$(\mu_{1} \cap \mu_{2})(x-y) = \operatorname{Min} \{\mu_{1}(x-y), \mu_{2}(x-y)\}$$

$$\ge \operatorname{Min} \{\mu_{1}(x) \circ \mu_{1}(y), \mu_{2}(x) \circ \mu_{2}(y)\}$$

$$\ge [\operatorname{Min} \{\mu_{1}(x), \mu_{2}(x)\}] \circ [\operatorname{Min} \{\mu_{1}(y), \mu_{2}(y)\}]$$

$$= (\mu_{1} \cap \mu_{2})(x) \circ (\mu_{1} \cap \mu_{2})(y)$$
Hence
$$(\mu_{1} \cap \mu_{2})(x-y) \ge (\mu_{1} \cap \mu_{2})(x) \circ (\mu_{1} \cap \mu_{2})(y)$$
.....(2)

$$(\gamma_{1} \cap \gamma_{2})(x+y) = \operatorname{Max} \{\gamma_{1}(x+y), \gamma_{2}(x+y)\}$$

$$\le \operatorname{Max} \{\gamma_{1}(x) \circ \gamma_{1}(y), \gamma_{2}(x) \circ \gamma_{2}(y)\}$$

$$\leq \left[\operatorname{Max} \left\{ \gamma_{1}(x), \gamma_{2}(x) \right\} \right] \circ \left[\operatorname{Max} \left\{ \gamma_{1}(y), \gamma_{2}(y) \right\} \right]$$
$$= \left(\gamma_{1} \cap \gamma_{2} \right) (x) \circ \left(\gamma_{1} \cap \gamma_{2} \right) (y)$$

Hence $(\gamma_1 \cap \gamma_2)(x+y) \leq (\gamma_1 \cap \gamma_2)(x) \circ (\gamma_1 \cap \gamma_2)(y)$ at(3) $(\gamma_1 \cap \gamma_2)(x-y) = \operatorname{Max} \{\gamma_1(x-y), \gamma_2(x-y)\}$ $\leq \operatorname{Max}\left\{\gamma_{1}(x)\circ\gamma_{1}(y),\gamma_{2}(x)\circ\gamma_{2}(y)\right\}$ $\leq \left[\operatorname{Max} \left\{ \gamma_{1}(x), \gamma_{2}(x) \right\} \right] \circ \left[\operatorname{Max} \left\{ \gamma_{1}(y), \gamma_{2}(y) \right\} \right]$ $=(\gamma_1 \cap \gamma_2)(x) \circ (\gamma_1 \cap \gamma_2)(y)$

Every intuitionistic fuzzy β – subalgebra of X is a Hence $(\gamma_1 \cap \gamma_2)(x - y) \leq (\gamma_1 \cap \gamma_2)(x) \circ (\gamma_1 \cap \gamma_2)(y)$(4) From (1),(2) and (3), (4)

 $A \cap B$ is also a intuitionistic fuzzy dot β – subalgebra of X

Corollary:3.2

 $A = \{(\mu_i, \gamma_i) / i = 1, 2, 3...\}$ be a family of If intuitionistic fuzzy dot β - subalgebra of X, then $\mu_i \cap \gamma_i$ is also a intuitionistic fuzzy dot β – subalgebra of X

Theorem: 3.3

 $A = (\mu_1, \gamma_1)$ and $B = (\mu_2, \gamma_2)$ be any two Let intuitionistic fuzzy dot β – subalgebra of X then $(A \times B)(x, y) = A(x) \circ B(y)$ is also a intuitionistic fuzzy dot β – subalgebra of $X \times X$

Proof:

Let
$$X = X \times X$$
 and let $\mu = \mu_1 \times \mu_2$, $\gamma = \gamma_1 \times \gamma_2$
 $\mu(x+y) = \mu\{(x_1, x_2) + (y_1, y_2)\}$

DOI 10.17148/IARJSET.2016.3602

International Advanced Research Journal in Science, Engineering and Technology Vol. 3, Issue 6, June 2016

$$= \mu(x_{1} + y_{1}, x_{2} + y_{2})$$

$$= (\mu_{1} \times \mu_{2})(x_{1} + y_{1}, x_{2} + y_{2})$$

$$= \mu_{1}(x_{1} + y_{1}) \circ \mu_{1}(x_{2} + y_{2})$$

$$\geq \mu_{1}(x_{1}) \circ \mu_{2}(x_{2}) \circ \mu_{1}(y_{1}) \circ \mu_{2}(y_{2})$$

$$= \mu_{1}(x_{1}) \circ \mu_{2}(x_{2}) \circ \mu_{1}(y_{1}) \circ \mu_{2}(y_{2})$$

$$= (\mu_{1} \times \mu_{2})(x_{1}, x_{2}) \circ (\mu_{1} \times \mu_{2})(y_{1}, y_{2})$$

$$= \mu(x) \circ \mu(y)$$

$$\begin{split} \gamma(x+y) &= \gamma \{ (x_1, x_2) + (y_1, y_2) \} \\ &= \gamma (x_1 + y_1, x_2 + y_2) \\ &= (\gamma_1 \times \gamma_2) (x_1 + y_1, x_2 + y_2) \\ &= \gamma_1 (x_1 + y_1) \circ \gamma_1 (x_2 + y_2) \\ &\leq \gamma_1 (x_1) \circ \gamma_2 (x_2) \circ \gamma_1 (y_1) \circ \gamma_2 (y_2) \\ &= \gamma_1 (x_1) \circ \gamma_2 (x_2) \circ \gamma_1 (y_1) \circ \gamma_2 (y_2) \\ &= (\gamma_1 \times \gamma_2) (x_1, x_2) \circ (\gamma_1 \times \gamma_2) (y_1, y_2) \\ &= \gamma(x) \circ \gamma(y) \end{split}$$

$$\mu(x-y) = \mu\{(x_1, x_2) - (y_1, y_2)\}$$

$$= \mu(x_1 - y_1, x_2 - y_2)$$

$$= (\mu_1 \times \mu_2)(x_1 - y_1, x_2 - y_2)$$

$$= \mu_1(x_1 - y_1) \circ \mu_1(x_2 - y_2)$$

$$\geq \mu_1(x_1) \circ \mu_2(x_2) \circ \mu_1(y_1) \circ \mu_2(y_2)$$

$$= (\mu_1 \times \mu_2)(x_1, x_2) \circ (\mu_1 \times \mu_2)(y_1, y_2)$$

$$= \mu(x) \circ \mu(y)$$

$$\gamma(x-y) = \gamma\{(x_1, x_2) - (y_1, y_2)\}$$

$$= \gamma(x_1 - y_1, x_2 - y_2)$$

$$= (\gamma_1 \times \gamma_2)(x_1 - y_1, x_2 - y_2)$$

$$= \gamma_1(x_1 - y_1) \circ \gamma_1(x_2 - y_2)$$

$$\leq \gamma_1(x_1) \circ \gamma_2(x_2) \circ \gamma_1(y_1) \circ \gamma_2(y_2)$$

$$= (\gamma_1 \times \gamma_2)(x_1, x_2) \circ (\gamma_1 \times \gamma_2)(y_1, y_2)$$

$$= (\gamma_1 \times \gamma_2)(x_1, x_2) \circ (\gamma_1 \times \gamma_2)(y_1, y_2)$$

$$= \gamma(x) \circ \gamma(y)$$

Hence $A \times B$ is also a intuitionistic fuzzy dot β –

subalgebra of $X \times X$

Theorem: 3.4

Let $f: X \to Y$ be a homomorphism of a β -algebra of X into a β -algebra of Y. If A is a intuitionistic fuzzy dot β -algebra of Y, then the pre-Also, image of A, denoted by $f^{-1}(A)$ is defined as

 $f^{-1}{A(x)} = A{f(x)}, \forall x \in X$, is a intuitionistic fuzzy dot β -subalgebra of X

Proof:

Let $A = (\mu, \gamma)$ be aintuitionistic fuzzy dot β – subalgebra of Y and let $x, y \in X$. Then

$$\begin{cases} f^{-1}(\mu) \} (x+y) = \mu \{ f(x+y) \} \\ = \mu (f(x) + f(y)) \\ \ge \mu (f(x)) \circ \mu (f(y)) \\ = \{ f^{-1}(\mu)(x) \} \circ \{ f^{-1}(\mu)(y) \} \end{cases}$$
Also
$$\{ f^{-1}(\mu) \} (x-y) = \mu \{ f(x-y) \} \\ = \mu (f(x) - f(y)) \\ \ge \mu (f(x)) \circ \mu (f(y)) \\ = \{ f^{-1}(\mu)(x) \} \circ \{ f^{-1}(\mu)(y) \} \end{cases}$$

$$\{ f^{-1}(\gamma) \} (x+y) = \gamma \{ f(x+y) \} \\ = \gamma (f(x) + f(y)) \\ \le \gamma (f(x)) \circ \gamma (f(y)) \\ = \{ f^{-1}(\gamma)(x) \} \circ \{ f^{-1}(\gamma)(y) \} \end{cases}$$
Also
$$\{ f^{-1}(\gamma) \} (x-y) = \gamma \{ f(x-y) \} \\ = \gamma (f(x) - f(y)) \\ \le \gamma (f(x)) \circ \gamma (f(y)) \\ = \{ f^{-1}(\gamma)(x) \} \circ \{ f^{-1}(\gamma)(y) \} \end{cases}$$

Hence $f^{-1}(A)$ is a intuitionistic fuzzy dot β – subalgebra of X

Theorem:3.5

Let $f: X \to Y$ be an endomorphism on a β -algebra of X.If A be a intuitionistic fuzzy dot β subalgebra of X.Define a intuitionistic fuzzy set $\mu_f: X \to [0,1]$ by $\mu_f(x) = \mu(f(x))$ and $\gamma_f: X \to [0,1]$ by $\gamma_f(x) = \gamma(f(x)), \forall x \in X$.Then $A = (\mu_f, \gamma_f)$ is a intuitionistic fuzzy dot β -subalgebra of X

Proof:

Let $x, y \in X$. Then

$$\mu_{f}(x+y) = \mu(f(x+y))$$

$$= \mu(f(x) + f(y))$$

$$\geq \mu(f(x)) \circ \mu(f(y))$$

$$= \mu_{f}(x) \circ \mu_{f}(y)$$

$$\mu_{f}(x-y) = \mu(f(x-y))$$

$$= \mu(f(x) - f(y))$$

International Advanced Research Journal in Science, Engineering and Technology Vol. 3, Issue 6, June 2016

$$\geq \mu(f(x)) \circ \mu(f(y))$$

$$= \mu_f(x) \circ \mu_f(y)$$

$$\gamma_f(x+y) = \gamma(f(x+y))$$

$$= \gamma(f(x) + f(y))$$

$$\leq \gamma(f(x)) \circ \gamma(f(y))$$

$$= \gamma_f(x) \circ \gamma_f(y)$$

$$\gamma_f(x-y) = \gamma(f(x-y))$$

$$= \gamma(f(x) - f(y))$$

$$\leq \gamma(f(x)) \circ \gamma(f(y))$$

Also,

Hence
$$A = (\mu_f, \gamma_f)$$
 is a intuitionistic fuzzy dot β – sub algebra of X

 $= \gamma_f(x) \circ \gamma_f(y)$

IV. CONCLUSION

In this chapter we introduce the concept of intuitionistic fuzzy dot β – sub algebra of β – algebras and investigate some of their useful properties. In my opinion, these definitions and results can be extended to other algebraic systems also.

ACKNOWLEDGMENT

The author would like to express his sincere thanks to the referees for their valuable comments and helpful suggestions in improving this paper

REFERENCES

- [1]. M. Abu Ayub Ansari, M. Chandramouleeswaran, Fuzzy β -subalgebra of β -algebra, Accepted
- [2]. N.O. Al-Shehrie, On fuzzy dot d-ideals of d- algebras, Advances in Algebra, 2, No. 1 (2009),1-8
- [3]. Arsham Borumand Saeid, Fuzzy dot BCK/BCI-algebras, International Journal of Algebra, 4, No. 7 (2010), 341-352
- [4]. N. Chandramowliswaran1, P. Muralikrishna, S. Srinivasan, On fuzzy dot SU-subalgebras, Intern. J. Fuzzy Mathematical Archive, 1 (2013), 62-65.
- [5]. Y. Imai, K. Iseki, On axion systems of propositional calculi, In: XIV Proc. Japan Academy, 42 (1966), 19-22
- [6]. K. Iseki, S. Tanaka, An introduction to theory of BCK-algebras, Math. Japon., 23 (1973), 1-26
- [7]. K. Iseki, On BCI-algebras, Math. Semin. Notes, Kobe Univ., 11 (1983), 313-320
- [8]. Y.B. Jun, Closed fuzzy ideals in BCI-algebras, Math Japon., 38, No. 1 (1993), 199-202
- [9]. Young Bae Jun, Sung Min Hong, Fuzzy subalgebras of BCK/BCIalgebras redefined, Scientiae mathematicae Japonicae Online, 4 (2001), 769-775
- [10]. Y.H. Kim, K.S. So, β -algebras and related topics, Commun. Korean Math. Soc., 27, No. 2 (2012), 217-222.
- [11]. K.H. Kim, On fuzzy dot subalgebras of d-algebras, International Mathematical Forum, 4, No. 13 (2009),
- [12]. J. Neggers, H.S. Kim, On B-algebras, Math. Vesnik., 54 (2002), 21-29
- [13]. J. Neggers, H.S. Kim, On $\beta\text{-algebras},$ Math. Slovaca, 52, No. 2 (2002), 517-530
- [14]. A. Rosenfeld, Fuzzy groups, J. Math. Anal. Appl., 35 (1972), 512-517.

[15]. O.G. Xi, Fuzzy BCK-algebras, Math. Japan, 36, No. 5 (1991), 935-942

- [16]. L.A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338-353
- [17]. K.T.Atanassov "Intuitionistic fuzzy sets", Fuzzy sets and Systems 20(1986) no.1, 87-96